EC/PPM metr arduino

Good day dear forum members. Don’t hit me hard I’m new! Help to understand how to shift the code to XOD what blocks it can be done? I’m a zero in C++.

/*
  ElCheapo Arduino EC-PPM measurments
 
  This scrip uses a common USA two prong plug and a 47Kohm Resistor to measure the EC/PPM of a Aquaponics/Hydroponics Sytem.
  You could modift this code to Measure other liquids if you change the resitor and values at the top of the code.
 
  This Program will give you a temperature based feed controller. See Read me in download file for more info.
 
  28/8/2015  Michael Ratcliffe  Mike@MichaelRatcliffe.com
 
 
          This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
 
 
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
 
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see .
 
    Parts:
    -Arduino - Uno/Mega
    -Standard American two prong plug
    -1 kohm resistor
    -DS18B20 Waterproof Temperature Sensor
 
    Limitations:

    -
 
    See www.MichaelRatcliffe.com/Projects for a Pinout and user guide or consult the Zip you got this code from
 
*/
 
 
//************************** Libraries Needed To Compile The Script [See Read me In Download] ***************//
// Both below Library are custom ones [ SEE READ ME In Downloaded Zip If You Dont Know how To install] Use them or add a pull up resistor to the temp probe
 
 
#include <OneWire.h>
#include <DallasTemperature.h>
 
 
 
 
 
 
//************************* User Defined Variables ********************************************************//
 
 
//##################################################################################
//-----------  Do not Replace R1 with a resistor lower than 300 ohms    ------------
//##################################################################################
 
 
int R1= 1000;
int Ra=25; //Resistance of powering Pins
int ECPin= A0;
int ECGround=A1;
int ECPower =A4;
 
 
//*********** Converting to ppm [Learn to use EC it is much better**************//
// Hana      [USA]        PPMconverion:  0.5
// Eutech    [EU]          PPMconversion:  0.64
//Tranchen  [Australia]  PPMconversion:  0.7
// Why didnt anyone standardise this?
 
 
float PPMconversion=0.7;
 
 
//*************Compensating for temperature ************************************//
//The value below will change depending on what chemical solution we are measuring
//0.019 is generaly considered the standard for plant nutrients [google "Temperature compensation EC" for more info
float TemperatureCoef = 0.019; //this changes depending on what chemical we are measuring
 
 
 
 
//********************** Cell Constant For Ec Measurements *********************//
//Mine was around 2.9 with plugs being a standard size they should all be around the same
//But If you get bad readings you can use the calibration script and fluid to get a better estimate for K
float K=2.88;
 
 
 
 
//************ Temp Probe Related *********************************************//
#define ONE_WIRE_BUS 10          // Data wire For Temp Probe is plugged into pin 10 on the Arduino
const int TempProbePossitive =8;  //Temp Probe power connected to pin 9
const int TempProbeNegative=9;    //Temp Probe Negative connected to pin 8
 
 
 
 
//***************************** END Of Recomended User Inputs *****************************************************************//
 
 
OneWire oneWire(ONE_WIRE_BUS);// Setup a oneWire instance to communicate with any OneWire devices
DallasTemperature sensors(&oneWire);// Pass our oneWire reference to Dallas Temperature.
 
 
float Temperature=10;
float EC=0;
float EC25 =0;
int ppm =0;
 
 
float raw= 0;
float Vin= 5;
float Vdrop= 0;
float Rc= 0;
float buffer=0;
 
 
 
 
//*********************************Setup - runs Once and sets pins etc ******************************************************//
void setup()
{
  Serial.begin(9600);
  pinMode(TempProbeNegative , OUTPUT ); //seting ground pin as output for tmp probe
  digitalWrite(TempProbeNegative , LOW );//Seting it to ground so it can sink current
  pinMode(TempProbePossitive , OUTPUT );//ditto but for positive
  digitalWrite(TempProbePossitive , HIGH );
  pinMode(ECPin,INPUT);
  pinMode(ECPower,OUTPUT);//Setting pin for sourcing current
  pinMode(ECGround,OUTPUT);//setting pin for sinking current
  digitalWrite(ECGround,LOW);//We can leave the ground connected permanantly
 
  delay(100);// gives sensor time to settle
  sensors.begin();
  delay(100);
  //** Adding Digital Pin Resistance to [25 ohm] to the static Resistor *********//
  // Consule Read-Me for Why, or just accept it as true
  R1=(R1+Ra);// Taking into acount Powering Pin Resitance
 
  Serial.println("ElCheapo Arduino EC-PPM measurments");
  Serial.println("By: Michael Ratcliffe  Mike@MichaelRatcliffe.com");
  Serial.println("Free software: you can redistribute it and/or modify it under GNU ");
  Serial.println("");
  Serial.println("Make sure Probe and Temp Sensor are in Solution and solution is well mixed");
  Serial.println("");
  Serial.println("Measurments at 5's Second intervals [Dont read Ec morre than once every 5 seconds]:");
 
 
};
//******************************************* End of Setup **********************************************************************//
 
 
 
 
//************************************* Main Loop - Runs Forever ***************************************************************//
//Moved Heavy Work To subroutines so you can call them from main loop without cluttering the main loop
void loop()
{
 
 
 
 
GetEC();          //Calls Code to Go into GetEC() Loop [Below Main Loop] dont call this more that 1/5 hhz [once every five seconds] or you will polarise the water
PrintReadings();  // Cals Print routine [below main loop]
 
 
delay(5000);
 
 
}
//************************************** End Of Main Loop **********************************************************************//
 
 
 
 
//************ This Loop Is called From Main Loop************************//
void GetEC(){
 
 
//*********Reading Temperature Of Solution *******************//
sensors.requestTemperatures();// Send the command to get temperatures
Temperature=sensors.getTempCByIndex(0); //Stores Value in Variable
 
 
 
 
//************Estimates Resistance of Liquid ****************//
digitalWrite(ECPower,HIGH);
raw= analogRead(ECPin);
raw= analogRead(ECPin);// This is not a mistake, First reading will be low beause if charged a capacitor
digitalWrite(ECPower,LOW);
 
 
 
 
//***************** Converts to EC **************************//
Vdrop= (Vin*raw)/1024.0;
Rc=(Vdrop*R1)/(Vin-Vdrop);
Rc=Rc-Ra; //acounting for Digital Pin Resitance
EC = 1000/(Rc*K);
 
 
//*************Compensating For Temperaure********************//
EC25  =  EC/ (1+ TemperatureCoef*(Temperature-25.0));
ppm=(EC25)*(PPMconversion*1000);
 
 
;}
//************************** End OF EC Function ***************************//
 
 
 
 
//***This Loop Is called From Main Loop- Prints to serial usefull info ***//
void PrintReadings(){
Serial.print("Rc: ");
Serial.print(Rc);
Serial.print(" EC: ");
Serial.print(EC25);
Serial.print(" Simens  ");
Serial.print(ppm);
Serial.print(" ppm  ");
Serial.print(Temperature);
Serial.println(" *C ");
 
 
/*
//********** Usued for Debugging ************
Serial.print("Vdrop: ");
Serial.println(Vdrop);
Serial.print("Rc: ");
Serial.println(Rc);
Serial.print(EC);
Serial.println("Siemens");
//********** end of Debugging Prints *********
*/
};

Original

Programming in XOD is very different from Arduino IDE. Most of what is in your coding example is hidden within existing nodes. I think the latest version has a way to write back to the serial port, but for something like this, it is easier to replace all the serial.print lines with watch nodes to see the data.

If existing sensor nodes don’t work with your particular temperature sensor, then a new one will need to be created. Since you have the header file and existing code showing how to read, it should not be too hard to look at existing sensor nodes and available XOD coding documentation to work out the new node.

Start here for XOD documentation: https://xod.io/docs/, which includes a link for an entire sub-set of documentation for making your own nodes.

1 Like